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Abstract

Hadronic jets are an important object of study in the ATLAS experiment at the LHC at CERN.
Jets are characterized by an energy-momentum four-vector, so a precise measurement of jet energy
is vital to collision analysis. These jet energies are calibrated in a multi-step process to bring them
to the jet energy scale (JES). The uncertainty in the jet energy scale is characterized by the jet
energy resolution. This article describes the JES calibration procedure, and presents an analysis of
the calibration using the random cones method to measure one key component of the jet energy
resolution, the noise term.

1 Introduction

1.1 Aims of this article

The ATLAS experiment employs a complicated calibration process for the analysis of pp collision energies.
The goal of this paper is to measure one component of the jet energy uncertainty - the noise term - using
the so-called random cones method. We will demonstrate how the random cones method is used to
further understand the jet energy resolution (JER) by calculating the noise term at the JES.

The article proceeds in seven sections. In section 1, an overview of ATLAS is given and the jet energy
scale and jet energy resolution are explained. In section 2 we discuss sources of errors and uncertainties
that comprise the jet energy resolution. Section 3 goes into some detail about the JES calibration process
commonly used by ATLAS; this is the process to be analyzed by the random cones method. In section 4
the random cones method itself is discussed. Finally, results about the characterization of the JER are
presented in section 5, with a summary of conclusions in Section 6. For additional technical details on
how this study was carried out, see the appendix (A).

Figure 1: The ATLAS detector, under construction (missing central detector)
ATLAS Experiment c©2007 CERN
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1.2 Description of ATLAS instruments

The ATLAS experiment features a multi-purpose detector designed to observe individual particles and
particle jets produced in the proton-proton collisions at the LHC. The main components of the AT-
LAS detector are, from center outward, the inner tracking detector (ID), electromagnetic and hadronic
sampling calorimeters, and the muon spectrometer (MS). [2]

The ID has complete azimuthal coverage, and spans the pseudorapitiy region |η| < 2.5 [2]. This
component consists of layers of silicon pixel, silicon microstrip and transition radiation tracking detectors.
These sub-detectors are surrounded by a superconducting solenoid that produces a uniform 2 T axial
magnetic field. This detector is used to reconstruct tracks from charged particles and determine their
transverse momenta from the curvature of the tracks. [7]

Jets are reconstructed from energy deposited in the ATLAS calorimeter system. Electromagnetic
calorimetry is provided by high granularity liquid argon (LAr) sampling calorimeters, which are split
into barrel (|η| < 1.475) and endcap (1.375 < |η| < 3.2) regions. In addition, inside this layer of
calorimeters, a LAr based presampler layer is included which allows corrections for energy loss due to
showers initiated by material before the calorimeters. Lead plates are used for absorption and span the
entire η region. [4]

The hadronic calorimeter is divided into the barrel (|η| < 0.8) and two extended barrel (0.8 < |η| <
1.7) regions, which are instrumented with scintillator tile/steel calorimeters and the hadronic endcap
region (1.5 < |η| < 3.2), which uses LAr/copper calorimeter modules. The forward calorimeter region
(3.1 < |η| < 4.9) is instrumented with LAr/copper and LAr/tungsten modules to provide electromagnetic
and hadronic energy measurements, respectively. The electromagnetic and hadronic calorimeters are
segmented in layers, allowing a determination of the longitudinal profiles of showers. [4]

Figure 2: Schematic rendering of the ATLAS detector
ATLAS Experiment c©2016 CERN

An ATLAS trigger system filters events to be stored. The trigger system consists of a hardware-based
trigger (L1) followed by a software-based higher level trigger (HLT) [3]. Jets are first identified at L1
using a sliding window algorithm using coarse granularity calorimeter towers as input. This data is
refined using jets reconstructed from calorimeter cells in the HLT.
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1.3 Definitions: Jets, JES, and JER

Jets are the dominant final state objects of high-energy pp interactions at the LHC. They are collimated
streams of particles that result after the collisions occur, when a quark or gluon decays and creates a
cascade, or shower, of additional quarks and gluons.

Jets are detected using data from all components of ATLAS. The inner detector measures tracks of
charged particles. When these particles decay, they produce a shower of partons, which then deposit
their energy in the calorimeters. The energy is deposited in topologically related clusters, and these
clusters comprise the jets. Various algorithms, for example the commonly used anti-kt algorithm [11],
are employed to determine jets from the clusters. These jets can usually be associated with the tracks
from the ID. The jets are calibrated using the multi-step process described in section 3.

When jets are constructed from collision data, they begin at an energy scale known as the ”constituent
scale.” There are two separate constituent scales, which are both used to reconstruct jets from the same
datasets. These are the EM scale, which reconstructs jets from data assuming the constituents are, e.g.
electrons, and the local cluster weighting (LCW) scale, which reconstructs jets assuming the constituents
are hadrons. The calibration brings the jets from the constituent scale to the JES in a series of steps.
[10]

Three separate corrections are made to the constituent scale jets: origin correction, and in-time
and out-of-time pileup correction. These steps are described in more detail below. These corrected
constituent scale jets are then further corrected to match ”truth jets” from Monte Carlo simulations.
Truth jets are reconstructed using the same algorithm as calorimeter jets, but using truth particles with
a lifetime greater than 30 ps as input, excluding muons and neutrinos. Only calorimeter and truth jets
with pT > 7 GeV and |η| < 4.5 are used. [10]

The Monte Carlo (MC) corrections are designed such that the jet response, which is the ratio of
calorimeter jet pT to truth jet pT (reconstructed using the same algorithm), is equal to unity. After this
step in the calibration process, the jets are said to be at the jet energy scale.

The jet energy resolution (JER) is the uncertainty in the final measurement of the jet energy after all
calibration is completed. It is computed by comparing measurements to simulation. Further refinements
to the jets are made at the JES, including global sequential calibration and residual in-situ calibration,
which improve the resolution without affecting the average jet pT . [1]

2 Sources of Errors and Uncertainties in Measurement

Calibration to the JES is necessary due to the multiple sources of noise and uncertainty when taking
measurements from ATLAS. Some of the main effects that require corrections include: [10]

1. Calorimeter non-compensation: Corrections are necessary to account for the two different
constituent scales. It is not known a priori what kind of particle produced a given measurement, and
the calorimeter has a different energy response to EM interactions versus hadrons, so a measurement
of the energy must take this difference into account.

2. Dead material: Energy lost in inactive areas of the detector

3. Electronic noise: Fluctuations in signal, an unavoidable characteristic of all electronic circuits

4. Leakage: Showers which reach the outer edges of the detector will not deposit all of their energy
in the calorimeters

5. Missing particles: The energy of particles which are included in the truth jet but were not
included in the algorithmically reconstructed jet

6. Energy deposits below noise thresholds: Only energy deposits above background noise are
included in the clusters used to reconstruct jets. Some particles may not pass this threshold and
these must be accounted for.

7. Pile-up (in-time): Multiple pp interactions may occur in the same bunch crossing

8. Pile-up (out-of-time): Residual signals from other bunch crossings may also affect energy read-
ings
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In recent years, pile-up has become increasingly significant, due to the operation of the LHC at higher
energies and intensity (luminosity). The mean number of inelastic pp interactions per bunch crossing,
〈µ〉, is related to the instantaneous luminosity, L: [6]

〈µ〉 =
L× σinel

Nbunch × fLHC

where σinel is the total inelastic pp cross-section and Nbunch × fLHC is the average frequency of bunch
crossings in the LHC. The instantaneous luminosity in 2012 reached values as high as 7.7×1033 cm−2 s−1,
and the average pile-up activity in 2012 was 〈µ〉 ≈ 20.7 interactions per bunch crossing. In-time-pileup,
which is the presence of additional interactions in the same bunch crossing as the triggered event,
produced additional signals in the ATLAS calorimeters, while the LHC bunch spacing of 50 ns allowed for
out-of-time pileup: further signal modulation from multiple interactions in surrounding bunch crossings.
[6]

3 JES Calibration

Now we will describe in detail the main calibration procedure that was analyzed in this study. The
following procedure takes the jets from the constituent scale to the JES, and applies a few final corrections.
The entire procedure is summarized in figure 3. This section will describe each step of the process.

Figure 3: Calibration process (Source: Ref [10])

3.1 Origin Correction

The ATLAS calorimeters measure the energy of particles. A direction is needed to specify the full 4-
vector of the jet. A simple choice is to point the vectors at the center of the detector, however, the
position of the first primary vertex (determined by the highest pT tracks) proves to be a better choice
after full reconstruction of the event. Origin correction thus consists of finding the energy center of the
jet and modifying the jet 4-vector such that the energy is unchanged but the direction originates from
the first primary vertex, which isdefined by that vertex having the highest

∑
p2T of tracks (with pT > 400

MeV) associated with it. [10]
Figure 4 shows an example event recorded by ATLAS. The first primary vertex is at the center, the

blue cones, which are jets, are pointing back at it. On the left there is a zoomed out view of a two tau
event. The taus decay into an electron (blue line) and a muon (red line). On the right is a close up view
of an event with four primary vertices, shown in the center in red.

3.2 Pile-up Correction

Pile-up noise is removed using an area based subtraction method. [10] This removes the effect of pile-up
by using the pile-up energy density in the η × φ plane 1

1Ref [10] explains these coordinates: ”The ATLAS coordinate system is right-handed, with the x-axis pointing to the
centre of the LHC ring, the z-axis following the beam direction and the y-axis pointing upwards. The azimuthal angle
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Figure 4: ATLAS events

Observations reveal that after this correction is applied a small dependence of the jet pT on pile-up
remains, so an additional residual correction is needed. This correction is parameterized by the number
of primary vertices, NPV , and the average number of interactions per bunch crossing, 〈µ〉, so that both
the residual in-time, characterized by NPV (at fixed η), and out-of-time, characterized by η (at fixed
NPV ), pile-up dependence can be captured.

The pile-up subtracted pT , following area based correction and residual correction, pcorrT , is therefore
given by:

pcorrT = pconstT − ρ×A− α× (NPV − 1)− β × 〈µ〉

where α and β are jet size and algorithm dependent constants derived from Monte Carlo and pconstT

is the jet pT at the topo-cluster scale. [6]

3.3 Jet Energy Scale

At this point another correction is applied, after which the data is said to be at the ”jet energy scale.”
The jet energy scale calibration is derived from relating the reconstructed jet energy to the truth jet
energy [5]. The JES factors are derived from isolated jets from an inclusive jet Monte Carlo sample
after the pile-up and origin corrections have been applied. Following the calibration in energy it is found
that in particular regions of the detector there is a bias in the η distribution with respect to the truth
jets. Therefore, an additional correction to the angle of the jet is applied to resolve this bias. This also
improves the closure in pT of jets, where the closure in a given quantity is defined by the fit of a Gaussian
function to the reconstructed quantity divided by the truth quantity after calibration.

3.4 Global Sequential Correction

After correcting to the JES, there is a difference between the closure - the deviation from unity of the jet
response - of quark and gluon initiated jets, as defined by angular matching to partons in Monte Carlo.
This difference is observed to be as high as 8%. Global sequential corrections uses the properties of the
jets as well as information from the muon chamber to account for this flavor dependence. The method
and results of this correction are discussed in detail in reference [9]

3.5 Residual in-situ calibration

In-situ techniques, employing the balance of physics objects in the transverse plane, are used in the final
stage of the JES calibration. The pT of reference objects (photons, Z bosons or other jets) and the jets
being calibrated are compared in both data and Monte Carlo simulation to measure the ratio [8]

〈pjetT /prefT 〉data = 〈pjetT /prefT 〉MC

This quantity defines a residual correction which is applied to jets reconstructed in data. These
in-situ techniques are discussed in detail in references [2] and [8]. These corrections vary from about 1%
to 2.5% of the JES (improving with larger pT ). [8]

φ = 0 corresponds to the positive x-axis and increases clockwise looking into the positive z direction. The pseudorapidity
η is an approximation for rapidity in the high energy limit, and it is related to the polar angle θ as η = ln tan θ/2”
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4 Random Cones Method for JER

Now, having enumerated the sources of error and procedure to correct the jet energies, we present an
analysis of the efficacy of that procedure, i.e. of the jet energy resolution, using the random cones
method.

The principle idea of the random cones method is to use ”zero bias” events to obtain a measurement
of the noise (including noise from pile-up), which contributes to the JER. Zero bias samples are created
by recording events exactly one accelerator turn after a high pT L1 calorimeter trigger. These events
will thus be contained in a random filled bunch collision with a rate proportional to the instantaneous
luminosity. Next, a cone is projected with a given radius at a random value of η and φ. All energy clusters
from the zero-bias sample that are found within the random cone are summed up at the constituent scale.
This energy is interpreted as the expected value of pile-up fluctuations that would be captured by an
anti-kt jet in the same direction. The assumption is justified because cones are a good approximation
for the shape of anti-kt jets, based on the way the algorithm is implemented. [11]

To decrease bias, a second cone is projected at φ+π and a new random η. The addition of π to the φ
value of the second cone helps to ensure that the two cones do not overlap. Due to their non-overlapping
nature, the common mode noise fluctuations are expected to be balanced in the two cones. By taking
the difference, biases like common mode noise are eliminated.

The JER found for the random cone jets is fitted to a three parameter model (summed in quadrature)
as follows:

σ(pT )

pT
=
N

pT
⊕ S
√
pT
⊕ C (1)

This functional form is a standard model for calorimeter resolutions. The S term captures uncertainties
due to sampling statistics, and is weakly correlated with pT . The C term reflects the growing uncertainty
with growing pT , largely due to energy leakage outside the active detector regions, and the N term is the
so-called noise term. The noise term is independent of pT and is mainly due to electronic and detector
noise, and pile-up. Since pile-up will be the dominant source of fluctuations in our zero-bias events, the
random cones method should accurately determine N . [2]

5 Results

5.1 Random Cone Resolution

The estimate for the JER using the random cone method, which we will refer to as the RCR (for Random
Cone Resolution), is calculated by subtracting the jet pT in the second cone from that of the first. As
explained above, the expected difference is zero, because each cone should contain the same distribution
of common mode noise fluctuations from pile-up. Thus, the width of the measured distribution is an
estimate of the pile-up contribution to the JER. Plots of this distribution for data and MC are shown in
figure 5 (where the difference in random cone pT is denoted with the variable name A). It is clear that
the distributions are centered around 0, as expected. The widths can be seen to be on the order of a few
GeV.

The RCR is calculated from the A distributions as follows: First the width of the distribution is
obtained. Starting from the mean of the distribution, we move one bin at a time to the right until the
area between the center the current bin is greater than 34% of the total area of the histogram. The
process is repeated to the left, and the width is defined as the average of difference between these two
distances. This width is then divided by

√
2 to give the RCR at the constituent scale.

Figure 6 shows RCR vs η and µ across all NPV ranges. We can see that the RCR is roughly constant
with respect to η, as expected, and grows linearly with µ. This is also expected, as the RCR is a measure
of the contribution to the JER from pile-up noise, and µ is directly correlated to energy from pile-up.

We can also see a weak dependence of the RCR on NPV as well. When there are more primary
vertices, we can expect a greater amount of noise. This effect can be seen in figure 7, which shows RCR
as a function of µ for two specific values of NPV. This trend holds across different NPV ranges.

Finally, we note that the random cone method is not ideal to analyze noise at high |η|. At high values
of η there is very little energy from pile-up, and thus statistics are very low. After generating a random
cone, the random cones algorithm will discard that cone and generate a new one if the energy in that
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(a) Random cone pT difference, EM scale (b) Random cone pT difference, LC scale

Figure 5: Random cone pT difference distributions

(a) RCR as a function of η (all NPV) (b) RCR as a function of µ (all NPV)

Figure 6: Random cone resolution (RCR)

cone did not pass a certain minimum threshold. In our analysis we found that the method begins to skip
a large number of cones at high η and thus produces inaccurate estimates of the noise term.

5.2 Error bars

Error bars were generated for the RCR calculations using the following sampling procedure: for each
random cone pT difference distribution, a random number r is generated from a Poisson distribution
with mean equal to the number of events in the distribution. A toy is constructed by r events from the
distribution. Two-hundred of these toys are made for each random cone distribution. The two-hundred
noise terms from the two-hundred toys are then plotted. The mean of these toy distributions is taken
as the noise term for that random cone run, and then finally the error is taken to be the RMS of the
distribution.

Figure 7 shows the RCR with the error bars generated using the toys. We can see that in general
the uncertainty on the RCR is small, except when µ is low. This dependence on µ is expected, because
sampling statistics are low when there is not a lot of energy from pile-up.

5.3 Taking RCR to the JES

Now that we have the RCR at the constituent scale, we need to calibrate it to the JES to estimate the
noise contribution to the JER. To do this, we define a scale factor f = pcalibT /pPU sub

T where pPU sub
T is

the jet pT after pile-up subtraction at the constituent scale (i.e. before calibration), and the numerator
is the total jet pT at the JES (after the full calibration). The RCR is scaled by the mean of f in each
truth jet pT bin. [10] This process gives results in the curves shown in 8 and 9.
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(a) RCR and error bars, NPV = 7 (b) RCR and error bars, NPV = 16

Figure 7: RCR for fixed NPV, with error bars

5.4 Noise Term

When fitting the RCR distributions to the equation 1 we found an unsatisfactory fit using only the
parameters N , C, and S. In order to improve the fit, we found it necessary to modify equation 1.
Equation 2 is our improved model.

σ(pT )

pT
=
N

pT
⊕ S
√
pT
⊕ D

p
3/2
T

⊕ C (2)

The terms N , S, and C all retain their significance in this new model. However, we have added an
additional term, D, to perform a more accurate fit to the data. RCR with fits to the three parameter
equation (1) are shown in figure 8 and our four parameter fit is shown in figure 9. Note that both the
fit parameters S and C are effectively zero, which is expected for our zero bias events. The only source
of uncertainty from the random cones should be due to noise, N .

(a) EM RCR with fit, 0.8 < |η| < 1.2 (b) LC RCR with fit, 0.8 < |η| < 1.2

Figure 8: RCR over pT plots, with fits to three parameter noise model 1. The fits are poor, especially
at low pT .

As a final check on the efficacy of the random cones method, we plot the JER calculated on the
MC samples with and without pile-up, their quadratic difference, and the RCR. Figures 10 and 11 show
characteristic results of these calculations for two η bins, from EM and LC jets. The red circles show the
JER for samples with pile-up, the blue squares show the JER for no pile-up samples, the black triangles
are the quadratic difference between the former two measures, and finally the green triangle shows the
RCR.

After subtracting in quadrature the no pile-up JER from the pile-up JER, the remaining uncertainties
should all be due to pile-up. This curve then, the quadratic difference curve (black triangles), should
match the RCR curve (green triangles), since RCR is also a measure of the uncertainty due to pile-up.
The ratio of these two curves is plotted in the lower half of each figure. If the curves match as expected,
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(a) EM RCR over pT , with fit, 0.8 < |η| < 1.2 (b) LC RCR over pT , with fit, 2.8 < |η| < 3.2

Figure 9: Calibrated RCR plots, with fits to four parameter noise model 2. The fits are much stronger
with the extra parameter.

then these ratio plots should be equal to unity everywhere. We observe significant deviation from unity,
and the effect worsens with increasing pT .

(a) JER vs RCR, 0.8 < |η| < 1.2 (b) JER vs RCR, 2.8 < |η| < 3.2

Figure 10: JER and RCR for LC samples

5.5 Closure

To investigate the discrepancy in the JER calculation versus the RCR calculation, discussed above, we
looked at the closure of the JES calibration method. Recall that closure is defined as the ratio of the
calibrated pT to the truth pT . For a perfect JES calibration, we expect a closure of 1. We find good
closure as pT increases, but poor closure at low pT . There is also a slight improvement in closure with
increasing η. Figures 12 and 13 show the mean pcalibT /ptrueT for EM and LC samples (i.e. the mean
closures from the calibrations), respectively, for two different η bins. Note that closure improves much
more rapidly in the samples with pile-up as compared to the samples without pile-up. The non-closure of
the JES calibration suggests that something is going wrong with the calibration procedure. We suspect
that the error lies within the residual pile-up correction step, because the JES closure differs between
the pile-up and no-pile up samples.

6 Conclusions

Our study suggests that the random cone method does not correctly account for of the contribution
to the JER from pile-up noise. Figures 10 and 11 clearly show a disagreement between the expected
JER and our calculation of the RCR. Our fits of equation 2 to the RCR data are strong, but they do
not reveal much about the pile-up noise distribution. The addition of the extra term to the uncertainty
model is artificial, a more or less arbitrary mathematical trick to get a good fit. More work needs to be
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(a) JER vs RCR over pT , 0.8 < |η| < 1.2 (b) JER vs RCR, 2.8 < |η| < 3.2

Figure 11: JER and RCR for EM samples

(a) 0.8 < |η| < 1.2 (b) 2.8 < |η| < 3.2

Figure 12: Mean JES closure on EM MC samples

done to investigate the non-closure of the JES calibration method before the random cones method can
be used effectively to measure the noise term. Once a good calibration is obtained, the noise term can
be read off of the fit and used to improve future measurements from the LHC, which will be increasingly
important as the beams are operated at higher luminosities.

A Appendix

A.1 Dataset

Our analysis used the zero bias events and the Monte Carlo samples JetM1 and JetM5. Zero bias events
are recorded one accelerator turn after a high pT L1 calorimeter trigger, so that there is an extremely
low probability for collisions.

A.2 Process overview

In order to employ and analyze the random cones method, the following steps were performed:

1. Raw data from ATLAS, in the form of DAOD and AOD files from the zero-bias events, was
processed into tree objects so that they can be manipulated in ROOT, a data analysis software
framework commonly used by ATLAS. More information on ROOT can be found at https://

root.cern.ch.

2. Random cones were generated, along with 3-D histograms of the random cone jets. These his-
tograms were reweighted according to jet pT .

3. Different slices of the histograms were plotted using the RandomConeMaker/SavePlots package,
and the width of the non-gaussian distributions were calculated.
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(a) 0.8 < |η| < 1.2 (b) 2.8 < |η| < 3.2

Figure 13: Mean JES closure on LC MC samples

4. Error bars were calculated for the RCR widths using repeated sampling.

5. The ratio of the calibrated jet pT to the truth jet pT was plotted for various bins. This ratio should
be close to unity for accurate calibrations. These histograms are also reweighted.

6. The model of the JER described in equation 1 was fit to the data; resolution plots were generated
and the noise term calculated.

7. The JER was calculated on the MC samples using the width of the pcalibT /ptrueT distributions.

8. Finally, plots were generated showing the JER in samples with and without pile-up and the differ-
ence between the two. This difference was compared to the random cone resolution.

A.3 Source Code

All source code written and used for this study is hosted on GitLab, in four repositories:

1. TreeMaker https://gitlab.com/khildebrand/TreeMaker

2. ReweightHistograms https://gitlab.com/khildebrand/ReweightHistograms

3. RandomConeMaker https://gitlab.com/khildebrand/RandomConeMaker

4. NoiseTermJES https://gitlab.com/khildebrand/NoiseTermJES
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